
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 29. October 2018
Markus Püschel, David Steurer

Algorithms & Data Structures Homework 6 HS 18

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:
Points:

Exercise 6.1 iPhone Drop Test (1 Point for Part 4).

You just got a new job at Apple in the department of destructive testing. The �rst task given is to test
the endurance of the new iPhone XR series. Speci�cally you need to determine the highest �oor that
the new iPhone can withstand when dropped out of the window.

When the phone is dropped and does not break, it is undamaged and can be dropped again. For sim-
plicity assume that subsequent drops of the phone do not a�ect its endurance (i.e. if it survives it will
have the identical state as if it weren’t dropped at all). However, once the iPhone has been broken, you
can no longer use it for another test.

If the phone breaks when dropped from �oor n, then it would also have broken from any �oor above
that. If the phone survives a fall, then it will survive any fall below that.

As this is your �rst responsibility at your new job, you want to impress your new boss, and deliver
results as soon as possible. To achieve that, you devise a strategy to minimize the number of drop tests
required to �nd the solution.

1. What strategy would you use if only one phone is given and you perform the drop test on a
building with n �oors? What are the maximum number of drop tests that you have to perform?

Solution: If we have one phone on disposal, we really have no other choice but to start at �oor 1.
If it survives, great, we go up to �oor 2 and try again, then �oor 3 . . . all the way up the building;
one �oor at a time. As a result, it will take us n trials in the worst case scenario.

2. What if we are given unlimited amount of identical phones?

Solution: In that case scenario, we can start at �oorn1 = dn2 e (d·e rounds up). If the phone breaks,
we repeat this procedure with the block of �oors 1, . . . , n1 − 1, if not, we repeat this procedure
with the block of �oors n1 + 1, . . . , n, essentially performing a binary search. Assuming worse
case scenario, it will take us blog2(n)c+ 1 trials.

3. What if we are given exactly 2 identical phones and the number of �oors n is �xed such that
n = 100?.

Solution: One option to do this would be to drop the �rst phone at the 50th �oor. If the phone
survives, we would need another 50 trials until we reach the top. This is improvement to the
strategy of having one phone, however, it is not optimal.

Another strategy would be to drop the phone every 10th �oor until it breaks. The moment it
breaks, we use the strategy of having one phone for the 9 �oors below the one where the �rst one
did break. Therefore, if the phone could survive a fall on the 99th �oor, we would need 19 drops
to determine that. Which is also not optimal.

We can do even better. What we need is a solution that minimizes our maximum regret. Imagine
we drop our �rst phone from �oor d, if it breaks, we can step through the previous (d− 1) �oors
one-by-one. If it doesn’t break, rather than jumping up another d �oors, instead we should step
up just (d−1) �oors (because we have one less drop available if we have to switch to one-by-one
�oors), so the next �oor we should try is �oor d + (d− 1).

Similarly, if this drop does not break, we next need to jump up to �oor d+(d−1)+(d−2), then
�oor d + (d− 1) + (d− 2) + (d− 3) . . . We keep reducing the step by one each time we jump
up, until that step-up is just one �oor, and get the following equation for a 100 �oor building:

d + (d− 1) + (d− 2) + (d− 3) + (d− 4) + ... + 1 = 100,

or in other words: d · (d + 1)/2 = 100. Therefore, the optimal d would be the solution to the
equation, i.e. d = 13.651, which we round up to 14. Therefore 14 drops:

Drop 1 2 3 4 5 6 7 8 9 10 11 12
Floor 14 27 39 50 60 69 77 84 90 95 99 100

4. Assume that you are given 3 identical phones and a building with n �oors. Determine the best
search strategy for the �oor where the phone breaks and give the number of drops in big-Θ
notation. There is no need to prove that is best but only asymptotically optimal algorithms count.

Solution: We can divide the building into Θ(3
√
n) blocks (sequences of consecutive �oors) of

size O(
3
√
n2). Starting from the �rst block we drop the �rst phone from the last �oor of each

block until the phone breaks. If the phone didn’t break after drop from the n-th �oor, the lowest
�oor where the phone breaks is higher than n (so we cannot determine it using a building with
n �oors). If the phone broke after drop from the last �oor of some block, the correct �oor (lowest
�oor where the phone breaks) is in this block.

Then we can divide this block of size b = O(
3
√
n2) into Θ(

√
b) = O(3

√
n) sub-blocks of size

O(
√
b) = O(3

√
n). Starting from the �rst sub-block we drop the second phone from the last �oor

of each sub-block until the phone breaks. If the phone broke after drop from the last �oor of some
sub-block, the correct �oor is in this sub-block.

Then, starting from the �rst �oor of this sub-block we drop the third phone from each �oor of
this sub-block until the phone breaks, and correctly determine the �oor. Since we have Θ(3

√
n)

blocks, O(3
√
n) sub-blocks in each block and O(3

√
n) �oors in each sub-block, the number of

drops is Θ(3
√
n) +O(3

√
n) +O(3

√
n) = Θ(3

√
n).

The precise number of drops can be obtained as follows:

Let’s assume that we would need d drops to cover the whole building. And then let’s devise a
function fp(d) that calculates how many �oors we can cover, where p represents the number of
available phones, and d represents the number of drops.

Let’s start by dropping one phone. If it breaks, we will explore the lower f2(d − 1) �oors; if it
survives, we will explore the upper f3(d− 1) �oors. Consequently we have:

f3(d) = 1 + f2(d− 1) + f3(d− 1),

2

and from the previous part, we know that f2(d) = d·(d+1)
2 , thus:

f3(d) = 1 +
d · (d− 1)

2
+ f3(d− 1) =

d∑
i=3

1 +
1

2

d∑
i=3

i2 − 1

2

d∑
i=3

i + f2(2) =
d · (d2 + 5)

6
.

Assuming n �oors, the number of �oors covered must be greater or equal than n:

d · (d2 + 5)

6
≥ n.

As a result, the number of drops will be the solution of the cubic equation de�ned above, creating
asymptotic number of drops for the search is Θ(3

√
n).

Exercise 6.2 Simple sorting.

1. Perform two iterations of Bubble Sort on the following array. The array has already been partially
sorted by previous iterations (after the double bar). By iterations we mean iterations of outer loop.
You should only write two arrays corresponding to the end of �rst and second iterations.

9 5 8 13 15 10 11 7 6 20 21 35
1 2 3 4 5 6 7 8 9 10 11 12

2. Perform two iterations of Selection Sort on the following array. The array has already been parti-
ally sorted by previous iterations (up to the double bar). By iterations we mean iterations of outer
loop. You should only write two arrays corresponding to the end of �rst and second iterations.

2 3 5 6 15 17 22 8 16 12 13 10
1 2 3 4 5 6 7 8 9 10 11 12

Solution:

1. First itetation:

5 8 9 13 10 11 7 6 15 20 21 35
1 2 3 4 5 6 7 8 9 10 11 12

Second iteration:

5 8 9 10 11 7 6 13 15 20 21 35
1 2 3 4 5 6 7 8 9 10 11 12

2. First iteration:

2 3 5 6 8 17 22 15 16 12 13 10
1 2 3 4 5 6 7 8 9 10 11 12

Second iteration:

2 3 5 6 8 10 22 15 16 12 13 17
1 2 3 4 5 6 7 8 9 10 11 12

3

Exercise 6.3 Inverse questions.

1. Give a sequence of 5 numbers for which Bubble Sort performs exactly 10 swaps of keys in order
to sort the sequence.

2. For all n > 1 give a sequence of n numbers for which Bubble Sort performs Θ(n
√
n) swaps of

keys in order to sort the sequence.

3. Assume that Selection Sort does not swap elements with the same index. For all n > 1 give a
sequence of n numbers for which Selection Sort performs exactly 1 swap of keys in order to sort
the sequence, but Bubble Sort and Insertion Sort perform at least Ω(n) swaps of keys.

4. For all n > 1 give a sequence of n numbers for which Bubble Sort, Selection Sort and Insertion
Sort perform Θ(n) swaps of keys in order to sort the sequence.

Solution:

1. For example, a sequence 5, 4, 3, 2, 1.

2. For example, a sequence

m,m− 1,m− 2, . . . , 3, 2, 1,m + 1,m + 2 . . . , n− 1, n,

where m = b
√
n
√
nc.

3. For example, a sequence
n, 2, 3, 4, . . . , n− 1, 1.

4. For example, if n is even, a sequence

2, 1, 4, 3, 6, 5, . . . , n, n− 1,

and if n is odd, a sequence

2, 1, 4, 3, 6, 5, . . . , n− 1, n− 2, n.

Exercise 6.4 Loop invariant (1 Point).

Consider the pseudocode of the MaxSubarraySum algorithm on an integer array a[0, . . . , n−1], n ≥ 1.

procedure MaxSubarraySum(a)
randmax← 0
max← 0
for 0 ≤ i < n do

randmax← randmax + a[i]
if randmax > max then

max← randmax
if randmax < 0 then

randmax← 0
return max

Find a loop invariant INV such that:

1. INV(0) holds before the execution of the loop.

2. If INV(i) holds at the beginning of a loop iteration, then INV(i + 1) holds at the end of the loop
iteration. Prove this.

3. INV(n) implies the correct solution.

4

Solution: INV(i) is a following statement: At the beginning of the i-th loop iteration:

• max is a maximal subarray sum of the array a[0, . . . , i− 1], if i = 0, max is 0.

• randmax is a maximal nonnegative sum of subarrays with end index i− 1, that is,

randmax = max{max
0≤j<i

i−1∑
k=j

a[k], 0},

if i = 0, randmax is 0.

1. INV(0) holds before the execution of the loop, since max = 0 and randmax = 0 in this case.

2. Assume that INV(i) holds at the beginning of the loop. At �rst, consider the case i > 0.

• At the end of the loop randmax is

max{max{max
0≤j<i

i−1∑
k=j

a[k], 0}+ a[i], 0} = max{max
0≤j<i

i−1∑
k=j

a[k] + a[i], a[i], 0} =

= max{max
0≤j≤i

i∑
k=j

a[k], 0}.

• At the end of the loop max is

max{max subarray sum of a[0, . . . , i− 1],max{max
0≤j<i

i−1∑
k=j

a[k], 0}+ a[i]} =

= max{max subarray sum of a[0, . . . , i− 1], max
0≤j<i

i∑
k=j

a[k], a[i]} =

= max{max subarray sum of a[0, . . . , i− 1], max
0≤j≤i

i∑
k=j

a[k]}.

Since any subarray of a[0, . . . , i] either is a subarray of a[0, . . . , i − 1] or has end index i,
this value is equal to a maximal subarray sum of the array a[0, . . . , i].

Hence INV(i + 1) holds at the end of the loop.

If i = 0, then at the end of the loop max and randmax are both max{0, a[0]}, hence in this case
INV(i + 1) also holds at the end of the loop.

3. INV(n) implies that at the end of the last loop iteration max is a maximal subarray sum of the
array a[0, . . . , n− 1] = a, which is the correct solution.

Exercise 6.5 TCP: Determine the maximum bandwidth (1 Point).

When transferring a large �le over the internet, you want the �le to arrive as fast as possible at the
receiver. For this, the TCP protocol must determine the maximum bandwidth (e.g., measured in number
of characters per second) which is available between sender and receiver. The available bandwidth is
in general unlimited, time-dependent, and di�erent for each transmitter-receiver pair. In this exercise,
the task is to design a procedure (an algorithm) that is as e�cient as possible to determine the available
bandwidth.

5

For simplicity, we assume that during a connection the available bandwidth remains constant. The TCP
protocol sends the data in each time unit with a bandwidth selected by the server. If the actual available
bandwidth is su�cient (i.e., higher than the selected one), then the data arrives at the receiver. The re-
ceiver sends in this case indirectly before the end of the unit of time a con�rmation back (the so-called
Acknowledgement). If the bandwidth selected by the server has exceeded the available bandwidth, then
the data sent in this time unit will be lost. The server detects this case by not receiving an acknowledg-
ment from the receiver at the end of the time unit. So in each time unit one bandwidth can be tested
by the server.

Design a procedure whereby the TCP protocol at the server determines the available bandwidth in as
few time units as possible. What is the asymptotic number O(f(b)) of time units needed to compute
the bandwidth b? (Assume that b > 0 is an integer.) Is your algorithm asymptotically optimal?

Solution: The idea of the procedure is as follows: the server starts with bandwidth 1 at time 1 (which
we assume to always be available). After that TCP doubles the bandwidth in each time step until no
Acknowledgment is received anymore. If this happens at timestep k, this means that the available
bandwidth b is between 2k−2 and 2k−1 (since the server recieved an acknowledment at time step k− 1
for bandwidth 2k−2).

In this interval, we then use binary search: in the �rst step, the protocol tries the bandwidth m =
2k−2+2k−1

2 . If the bandwidth is su�cient, the binary search continues in the interval [m, 2k−1]. If the
server does not get an Ackonwledgement for bandwidth m, then the search continues in the interval
[2k−2,m]. The procedure terminates if the interval contains exactly one element.

Let b be the bandwidth we are looking for. Then the doubling phase takes maximum log(b) + 1 steps.
The binary search is then, in the worst case, on the interval [b, 2b], and thus contains b elements. Again,
a maximum of log(b) steps are needed until we �nd b. It follows that this procedure as a whole requires
O(log(b)) time units to determine b.

To see why this is optimal, think of the following: our taks is more di�cult than the task to search for b
in a sorted range containing b elements (which is exactly the second subtask we solve). We know from
the lecture, that already this search has a lower bound of log(b) time steps.

Submission: On Monday, 06.11.2018, hand in your solution to your TA before the exercise class starts.

6

